Oxidative Stress, Amyloid-β Peptide, and Altered Key Molecular Pathways in the Pathogenesis and Progression of Alzheimer’s Disease
نویسندگان
چکیده
Oxidative stress is implicated in the pathogenesis and progression of Alzheimer's disease (AD) and its earlier stage, amnestic mild cognitive impairment (aMCI). One source of oxidative stress in AD and aMCI brains is that associated with amyloid-β peptide, Aβ1-42 oligomers. Our laboratory first showed in AD elevated oxidative stress occurred in brain regions rich in Aβ1-42, but not in Aβ1-42-poor regions, and was among the first to demonstrate Aβ peptides led to lipid peroxidation (indexed by HNE) in AD and aMCI brains. Oxidatively modified proteins have decreased function and contribute to damaged key biochemical and metabolic pathways in which these proteins normally play a role. Identification of oxidatively modified brain proteins by the methods of redox proteomics was pioneered in the Butterfield laboratory. Four recurring altered pathways secondary to oxidative damage in brain from persons with AD, aMCI, or Down syndrome with AD are interrelated and contribute to neuronal death. This "Quadrilateral of Neuronal Death" includes altered: glucose metabolism, mTOR activation, proteostasis network, and protein phosphorylation. Some of these pathways are altered even in brains of persons with preclinical AD. We opine that targeting these pathways pharmacologically and with lifestyle changes potentially may provide strategies to slow or perhaps one day, prevent, progression or development of this devastating dementing disorder. This invited review outlines both in vitro and in vivo studies from the Butterfield laboratory related to Aβ1-42 and AD and discusses the importance and implications of some of the major achievements of the Butterfield laboratory in AD research.
منابع مشابه
A Search for Mitochondrial Damage in Alzheimer’s Disease Using Isolated Rat Brain Mitochondria
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects regions of the brain that control cognition, memory, language, speech and awareness to one’s physical surroundings. The pathological initiation and progression of AD is highly complex and its prevalence is on the rise. In his study, Alzheimer's disease was induced with single injection of amyloid-β (Aβ) peptides (...
متن کاملA Search for Mitochondrial Damage in Alzheimer’s Disease Using Isolated Rat Brain Mitochondria
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects regions of the brain that control cognition, memory, language, speech and awareness to one’s physical surroundings. The pathological initiation and progression of AD is highly complex and its prevalence is on the rise. In his study, Alzheimer's disease was induced with single injection of amyloid-β (Aβ) peptides (...
متن کاملThe effect of flavonoids in the treatment of Alzheimer’s disease: review article
Alzheimer’s disease (AD) is the most prevalent age-related neurodegenerative disorder worldwide, and no cure or prevention has been found for it. Extracellular senile plaque and intracellular neurofibrillary tangles are two important histopathological hallmarks of AD, which are both harmful for the cell. Senile plaques are composed of amyloid beta and neurofibrillary tangles are formed by hyper...
متن کاملRosmarinic acid mitigates learning and memory disturbances in amyloid β(25–35)-induced model of Alzheimer’s disease in rat
Abstract Background and Objective: Alzheimer’s disease (AD) is a weakening neurodegenerative disorder typified by increased b-amyloid (Ab) deposition and neuronal dysfunction causing to impaired learning and memory. Among proposed risk factors, induced oxidative stress is a main cause for incidence of the disease. The aim of this study was to determine the effects of the rosmarinic acid on lear...
متن کاملNeuroprotective effects of epigallocatechin-3-gallate in an experimental model of Alzheimer’s disease in rat: a histological study
Abstract Introduction: Neurodegeneration change is one of the hallmark symptoms of which Alzheimer’s disease (AD) can be modeled by β-amyloid injection into specific regions of brain. (-)-Epigallocatechin-3-gallate (EGCG) is a potent antioxidant agent that its role against oxidative stress and inflammation has been shown in prior studies. In the present study, we have wanted to determine wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 62 شماره
صفحات -
تاریخ انتشار 2018